skip to main content


Search for: All records

Creators/Authors contains: "Harrison, T. Mark"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We undertook Zr isotope measurements on zircon, titanite, biotite, amphibole, and whole rocks from the La Posta pluton (Peninsular Ranges, southern California) together with trace element analyses and U-Pb age measurements to understand the controls on Zr isotope fractionation in igneous rocks, including temperature, crystallization sequence, and kinetic effects. We find large (>0.6‰) Zr isotope fractionations (expressed as δ94/90Zr) between titanite and zircon forming at approximately the same temperature. Using equilibrium fractionation factors calculated from ionic and ab initio models, we infer the controls on Zr isotope evolution to include the relative order in which phases appear on the liquidus, with titanite fractionation resulting in isotopically lighter melt and zircon fractionation resulting in isotopically heavier melt. While these models of Zr fractionation can explain δ94/90Zr variations in zircon of up to ∼1.5‰, crystallization order, temperature and presence of co-crystallizing phases do not explain all aspects of the intracrystalline Zr isotopic distribution in zircons in the La Posta pluton or the large range of Zr isotopic values among zircons (>2‰). Without additional constraints, such as knowledge of co-crystallizing phases and a better understand of the true causes of Zr isotope fractionation, Zr isotopes in zircon remains an ambiguous proxy of magmatic evolution. 
    more » « less
    Free, publicly-accessible full text available July 1, 2024
  2. null (Ed.)
    Tectonic deformation can influence spatiotemporal patterns of erosion by changing both base level and the mechanical state of bedrock. Although base-level change and the resulting erosion are well understood, the impact of tectonic damage on bedrock erodibility has rarely been quantified. Eastern Tibet, a tectonically active region with diverse lithologies and multiple active fault zones, provides a suitable field site to understand how tectonic deformation controls erosion and topography. In this study, we quantified erosion coefficients using the relationship between millennial erosion rates and the corresponding channel steepness. Our work shows a twofold increase in erosion coefficients between basins within 15 km of major faults compared to those beyond 15 km, suggesting that tectonic deformation through seismic shaking and rock damage significantly affects eastern Tibet erosion and topography. This work demonstrates a field-based, quantitative relationship between rock erodibility and fault damage, which has important implications for improving landscape evolution models. 
    more » « less
  3. Abstract

    Metamorphic rocks from the Connecticut Valley Trough (CVT), Vermont, and Massachusetts, have been examined using quartz‐in‐garnet (QuiG) and conventional thermobarometry, thermodynamic reaction modelling, diffusion modelling, and40Ar/39Ar thermochronology to constrain theirP–T–tpaths during Acadian metamorphism and subsequent exhumation. Numerous samples, collected in the vicinity of the Acadian domes, contain garnet porphyroblasts that display cloudy zones characterized by numerous fluid inclusions and modified garnet compositions associated with the replacement of the original garnet by biotite±muscovite±plagioclase±quartz±lowXgrs/enrichedXsps. QuiG and conventional thermobarometry constrain both the conditions of garnet nucleation and peakP–Tconditions to have occurred at ~0.85–1.05 GPa, ~550–600°C. Most notably, QuiG barometry was performed on inclusions adjacent to these reaction zones in conjunction with Gibbs method reaction modelling to reveal that these dissolution–reprecipitation reactions occurred during nearly isothermal decompression from the peakP–Tconditions to around ~0.3 GPa, 550°C. Diffusion modelling reveals that the Mn zoning profiles created during garnet resorption that accompanied decompression formed in less thanc. 3 Ma, which constrains the tectonic exhumation to have occurred at 8–10 mm/year. Subsequent cooling to 500°C occurred rapidly at a rate of 100°C/Ma, followed by slower cooling reaching 1.7°C /Ma by the mid Carboniferous. This is the first reported example of QuiG barometry revealing a multi‐stage metamorphic history and highlights the utility of this method for unravelling complex metamorphic terranes.

     
    more » « less
  4. null (Ed.)
    The time of origin of the geodynamo has important implications for the thermal evolution of the planetary interior and the habitability of early Earth. It has been proposed that detrital zircon grains from Jack Hills, Western Australia, provide evidence for an active geodynamo as early as 4.2 billion years (Ga) ago. However, our combined paleomagnetic, geochemical, and mineralogical studies on Jack Hills zircons indicate that most have poor magnetic recording properties and secondary magnetization carriers that postdate the formation of the zircons. Therefore, the existence of the geodynamo before 3.5 Ga ago remains unknown. 
    more » « less
  5. Zircon crystals from the Jack Hills, Western Australia, are one of the few surviving mineralogical records of Earth’s first 500 million years and have been proposed to contain a paleomagnetic record of the Hadean geodynamo. A prerequisite for the preservation of Hadean magnetization is the presence of primary magnetic inclusions within pristine igneous zircon. To date no images of the magnetic recorders within ancient zircon have been presented. Here we use high-resolution transmission electron microscopy to demonstrate that all observed inclusions are secondary features formed via two distinct mechanisms. Magnetite is produced via a pipe-diffusion mechanism whereby iron diffuses into radiation-damaged zircon along the cores of dislocations and is precipitated inside nanopores and also during low-temperature recrystallization of radiation-damaged zircon in the presence of an aqueous fluid. Although these magnetites can be recognized as secondary using transmission electron microscopy, they otherwise occur in regions that are indistinguishable from pristine igneous zircon and carry remanent magnetization that postdates the crystallization age by at least several hundred million years. Without microscopic evidence ruling out secondary magnetite, the paleomagnetic case for a Hadean–Eoarchean geodynamo cannot yet been made.

     
    more » « less